NASA’s Mars Reconnaissance Orbiter: Water Flowed on Mars a Billion Years Longer Than Thought

NASA’s Mars Reconnaissance Orbiter used its Context Camera to capture this image of Bosporos Planum, a location on Mars. The white specks are salt deposits found within a dry channel. The largest impact crater in the scene is nearly 1 mile (1.5 kilometers) across. Credit: NASA/JPL-Caltech/MSSS

Caltech researchers used the Mars Reconnaissance Orbiter to determine that surface water left salt minerals behind as recently as 2 billion years ago.

Mars once rippled with rivers and ponds billions of years ago, providing a potential habitat for microbial life. As the planet’s atmosphere thinned over time, that water evaporated, leaving the frozen desert world that NASA’s Mars Reconnaissance Orbiter (MRO) studies today.

It’s commonly believed that Mars’ water evaporated about 3 billion years ago. But two scientists studying data that MRO has accumulated at Mars over the last 15 years have found evidence that reduces that timeline significantly: Their research reveals signs of liquid water on the Red Planet as recently as 2 billion to 2.5 billion years ago, meaning water flowed there about a billion years longer than previous estimates.

The findings – published in AGU Advances on December 27, 2021 – center on the chloride salt deposits left behind as icy meltwater flowing across the landscape evaporated.

While the shape of certain valley networks hinted that water may have flowed on Mars that recently, the salt deposits provide the first mineral evidence confirming the presence of liquid water. The discovery raises new questions about how long microbial life could have survived on Mars, if it ever formed at all. On Earth, at least, where there is water, there is life.

The study’s lead author, Ellen Leask, performed much of the research as part of her doctoral work at Caltech in Pasadena. She and Caltech professor Bethany Ehlmann used data from the MRO instrument called the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to map the chloride salts across the clay-rich highlands of Mars’ southern hemisphere – terrain pockmarked by impact craters. These craters were one key to dating the salts: The fewer craters a terrain has, the younger it is. By counting the number of craters on an area of the surface, scientists can estimate its age.

MRO has two cameras that are perfect for this purpose. The Context Camera, with its black-and-white wide-angle lens, helps scientists map the extent of the chlorides. To zoom in, scientists turn to the High-Resolution Imaging Science Experiment (HiRISE) color camera, allowing them to see details as small as a Mars rover from space. (See image below for an example.)

This animation shows the position of NASA’s Curiosity rover as it journeyed 1,106 feet (337 meters) through an area of Mount Sharp called “the clay-bearing unit” between May 31 and July 20, 2019. Each of these two images were taken by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter. The first image shows the rover, which appears as a gray speck, at a location called “Woodland Bay” (top center). The second shows “Sandside Harbour” (bottom center, near the dark sand patch). Look carefully and you can even see the rover’s tracks arcing to the right of the second image. Credit: NASA/JPL-Caltech/University of Arizona

Using both cameras to create digital elevation maps, Leask and Ehlmann found that many of the salts were in depressions – once home to shallow ponds – on gently sloping volcanic plains. The scientists also found winding, dry channels nearby – former streams that once fed surface runoff (from the occasional melting of ice or permafrost) into these ponds. Crater counting and evidence of salts on top of volcanic terrain allowed them to date the deposits.

“What is amazing is that after more than a decade of providing high-resolution image, stereo, and infrared data, MRO has driven new discoveries about the nature and timing of these river-connected ancient salt ponds,” said Ehlmann, CRISM’s deputy principal investigator. Her co-author, Leask, is now a post-doctoral researcher at Johns Hopkins University’s Applied Physics Laboratory, which leads CRISM.

The salt minerals were first discovered 14 years ago by NASA’s Mars Odyssey orbiter, which launched in 2001. MRO, which has higher-resolution instruments than Odyssey, launched in 2005 and has been studying the salts, among many other features of Mars, ever since. Both are managed by NASA’s Jet Propulsion Laboratory in Southern California.

“Part of the value of MRO is that our view of the planet keeps getting more detailed over time,” said Leslie Tamppari, the mission’s deputy project scientist at JPL. “The more of the planet we map with our instruments, the better we can understand its history.”

Related Posts

Meet Jonny Kim: A Harvard doctor, Navy Seal Sniper, and A NASA Astronaut

Wheᥒ you were a kid, do you rememƅer all the fuᥒ thiᥒgѕ you waᥒted to do aᥒd the adveᥒtureѕ you waᥒted to go oᥒ? Joᥒᥒy Kim aᴄhieved…

‘Giant arc’ stretching 3.3 billion light-years across the cosmos shouldn’t exist

A ᥒewly diѕᴄovered ᴄreѕᴄeᥒt of galaxieѕ ѕpaᥒᥒiᥒg 3.3 ƅillioᥒ light-yearѕ iѕ oᥒe of the world’ѕ largeѕt kᥒowᥒ ѕtruᴄtureѕ, ᴄhalleᥒgiᥒg ѕome of aѕtroᥒomerѕ’ moѕt fuᥒdameᥒtal aѕѕumptioᥒѕ aƅout the…

Scientists Claim To Have Discover What Existed BEFORE The Beginning Of The Universe!

Noᥒ-ѕᴄieᥒtifiᴄ verѕioᥒѕ of the aᥒѕwer have iᥒvoked maᥒy godѕ aᥒd have ƅeeᥒ the ƅaѕiѕ of all religioᥒѕ aᥒd moѕt philoѕophy ѕiᥒᴄe the ƅegiᥒᥒiᥒg of reᴄorded time. Now…

NASA Shares Largest-Ever Image Of Andromeda Galaxy, Internet Calls It “Extraordinarily Beautiful”

Ameriᴄaᥒ ѕpaᴄe ageᥒᴄy NASA oᥒ Suᥒday ѕhared the “largeѕt-ever” image aѕѕemƅled of the Aᥒdromeda galaxy ƅy the Huƅƅle Spaᴄe Teleѕᴄope. The piᴄture waѕ ᴄaptured ѕeveᥒ yearѕ ago…

An Object That’s ‘Unlike Anything Astronomers Have Ever Seen’ Is Sending Radio Signals To Earth, Repeating ‘Every 18.18 Minutes, Like Clockwork’

Aᴄᴄordiᥒg to Auѕtraliaᥒ aѕtroᥒomerѕ, a weird ѕpiᥒᥒiᥒg oƅjeᴄt iᥒ the Milky Way haѕ ƅeeᥒ ideᥒtified that iѕ uᥒlike aᥒythiᥒg aѕtroᥒomerѕ have ever ѕeeᥒ. The oƅjeᴄt, whiᴄh waѕ…

The James Webb Telescope Is So Powerful It Can See The Clouds And Sea Of Saturn’s Moon Titan

Let’ѕ ѕee what the weather iѕ oᥒ Titaᥒ today…. Will there ƅe methaᥒe preᴄipitatioᥒ, or will it ƅe ᴄlouded ƅy ethaᥒe? NASA ‘ѕ Jameѕ Weƅƅ Teleѕᴄope ᴄoᥒtiᥒueѕ…

Leave a Reply

Your email address will not be published. Required fields are marked *